COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutativity Degrees of Wreath Products of Finite Abelian Groups

We compute commutativity degrees of wreath products A o B of finite abelian groups A and B . When B is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n2. This answers a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the number of conjugacy classes in such wreath products, and obtain an interesting elementary numbe...

متن کامل

Finite groups with three relative commutativity degrees

‎‎For a finite group $G$ and a subgroup $H$ of $G$‎, ‎the relative commutativity degree of $H$ in $G$‎, ‎denoted by $d(H,G)$‎, ‎is the probability that an element of $H$ commutes with an element of $G$‎. ‎Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$‎. ‎It is shown that a finite group $G$ admits three relative commutativity degrees if a...

متن کامل

finite groups with three relative commutativity degrees

‎‎for a finite group $g$ and a subgroup $h$ of $g$‎, ‎the relative commutativity degree of $h$ in $g$‎, ‎denoted by $d(h,g)$‎, ‎is the probability that an element of $h$ commutes with an element of $g$‎. ‎let $mathcal{d}(g)={d(h,g):hleq g}$ be the set of all relative commutativity degrees of subgroups of $g$‎. ‎it is shown that a finite group $g$ admits three relative commutativity degrees if a...

متن کامل

Representation Zeta Functions of Wreath Products with Finite Groups

Let G be a group which has a finite number hn(G) of irreducible linear representations in GLn(C) for all n ≥ 1. Let ζ(G, s) = P∞ n=1 hn(G)n −s be its representation zeta function. First, in case G = H oXQ is a permutational wreath product with respect to a permutation group Q on a finite set X, we establish a formula for ζ(G, s) in terms of the zeta functions of H and of subgroups of Q, and of ...

متن کامل

Commutativity in non-Abelian Groups

Let P2(G) be defined as the probability that any two elements selected at random from the group G, commute with one another. If G is an Abelian group, P2(G) = 1, so our interest lies in the properties of the commutativity of nonAbelian groups. Particular results include that the maximum commutativity of a non-Abelian group is 5/8, and this degree of commutativity only occurs when the order of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2008

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972708000038